Differential distribution of proteins regulating GABA synthesis and reuptake in axon boutons of subpopulations of cortical interneurons.

نویسندگان

  • Kenneth N Fish
  • Robert A Sweet
  • David A Lewis
چکیده

Subclasses of γ-aminobutyric acid (GABA) interneurons differentially influence cortical network activity. The contribution of differences in GABA synthesis and reuptake in axon boutons to cell type-specific functions is unknown. GABA is synthesized within boutons by glutamic acid decarboxylase 65 (GAD65) and GAD67, while GAT1 is responsible for GABA reuptake. Using an imaging methodology capable of determining the colocalization frequency of different immunocytochemical labels in the same bouton and the quantification of the fluorescence intensity of each label in these same structures, we assessed the bouton levels of GAD65, GAD67, and GAT1 in parvalbumin-expressing chandelier (PV(ch)) and basket (PV(b)) neurons and cannabinoid 1 receptor-expressing basket (CB1r(b)) neurons in the monkey prefrontal cortex. We show that PV(ch) boutons almost exclusively contained GAD67, relative to GAD65, whereas CB1r(b) boutons contained mostly GAD65. In contrast, both GAD65 and GAD67 were easily detected in PV(b) boutons. Furthermore, in comparison with PV(ch) boutons, CB1r(b) boutons expressed low to undetectable levels of GAT1. Our findings provide a new basis for the distinctive functional roles of these perisomatic-innervating interneurons in cortical circuits. In addition, they strongly suggest that altered levels of GAD67 or GAD65, as seen in some psychiatric diseases, would have cell type-specific consequences on the modulation of GABA neurotransmission.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GABA signaling promotes synapse elimination and axon pruning in developing cortical inhibitory interneurons.

Accumulating evidence indicates that GABA acts beyond inhibitory synaptic transmission and regulates the development of inhibitory synapses in the vertebrate brain, but the underlying cellular mechanism is not well understood. We have combined live imaging of cortical GABAergic axons across time scales from minutes to days with single-cell genetic manipulation of GABA release to examine its rol...

متن کامل

Presynaptic GABAB Receptor Regulates Activity-Dependent Maturation and Patterning of Inhibitory Synapses through Dynamic Allocation of Synaptic Vesicles

Accumulating evidence indicate that GABA regulates activity-dependent development of inhibitory synapses in the vertebrate brain, but the underlying mechanisms remain unclear. Here we combined live imaging of cortical GABAergic axons with single cell genetic manipulation to dissect the role of presynaptic GABA(B) receptors (GABA(B)Rs) in inhibitory synapse formation in mouse. Developing GABAerg...

متن کامل

Targets and Quantitative Distribution of GABAergic Synapses in the Visual Cortex of the Cat.

The morphology and postsynaptic targets of GABA-containing boutons were determined in the striate cortex of cat, using a postembedding immunocytochemical technique at the electron microscopic level. Two types of terminals, both making symmetrical synaptic contacts, were GABA-positive. The first type (95% of all GABA-positive boutons) contained small pleomorphic vesicles, the second type (5%) co...

متن کامل

Dual role of substance P/GABA axons in cortical neurotransmission: synaptic triads on pyramidal cell spines and basket-like innervation of layer II-III calbindin interneurons in primate prefrontal cortex.

In spite of accumulating evidence on the potent neuromodulatory, neuroprotective, trophic and memory-enhancing effects of the neuropeptide substance P (SP) in the cerebral cortex, the excitatory or inhibitory nature of the cortical SP innervation remains unclear and the postsynaptic targets of SP fibers are not defined. To obtain further insight into these issues, we have examined SP-containing...

متن کامل

Number, density, and surface/cytoplasmic distribution of GABA transporters at presynaptic structures of knock-in mice carrying GABA transporter subtype 1-green fluorescent protein fusions.

GABA transporter subtype 1 (GAT1) molecules were counted near GABAergic synapses, to a resolution of approximately 0.5 microm. Fusions between GAT1 and green fluorescent protein (GFP) were tested in heterologous expression systems, and a construct was selected that shows function, expression level, and trafficking similar to that of wild-type (WT) GAT1. A strain of knock-in mice was constructed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cerebral cortex

دوره 21 11  شماره 

صفحات  -

تاریخ انتشار 2011